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How to quantify Atmospheric Evaporative Demand?

Estimates of AED is widely required for hydrological analyses such as irrigation scheduling, water resources management,
drought monitoring, hydroclimatologic variability......
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PET——the most suitable measure representing AED of actual land surfaces
under given metrological conditions



How to choose right PET model from model pool for AED estimating?

PET could be estimated by some physical or empirical models. However, numerous PET models have been introduced, and there
may exist significant differences among their estimates and variation trends.
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Therefore, it is necessary for us to determine the appropriate PET model(s) representing AED,
especially for analyses on long-term dynamics in evaporative demand under global climate
change.



Water-limited vs. Energy-limited Evaporation

These two terms have long been used for understanding the role of evaporation in the water balance at various space-time
scales
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Therefore, it is necessary to find a feasible way to define the water- or energy-limited states in
order to evaluate the capability of PET models in capturing dynamics in AED.



How to define Water- or Energy-limited conditions?

There also exist proportional or inverse relationships between AET trends and P trends for different hydroclimatological
conditions. Thus, it is executable for us to define the states according to the observed relationships between AET trends and P
trends, and hence obtain the ‘realistic’ equivalent trends in PET and evaporative demand.
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Objectives

Therefore, this study aims to assess the utility of PET models in capturing annual and seasonal dynamics of evaporative
demand, using the observed relationship between the trends of AET and P as an approach to define the corresponding
hydroclimatological (i.e., water- or energy-limited) states.

P Assessing the magnitudes of PET;
P Assessing the annual trends of PET;

P Assessing the per-month trends of PET.
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Eight typical ecosystems with
eddy covariance flux towers,
as part of ChinaFLUX

Three forest sites, three
grassland sites, one wetland
site and one cropland site.

These eight sites are separated
along a broad geographical
distribution and encompass
the most prevalent climate
and ecosystem types in China



Selected PET models

PET models selected for this study.

Classification No. Common model name Input variables Reference
Fully physical 1 Penman R, Ty B Ul Penman (1948)
Radiation-based 2 Makkink R, T, Xu and Singh (2002)
3 Turc R., T,, RH Lu et al. (2005)
4 Jensen-Haise Rs, T, Jensen and Haise (1963)
5 Stephens-Stewart R, T, McGuinness and Bordne (1972)
6 Priestly-Taylor R, T, Priestley and Taylor (1972)
7 Hargreaves R, T, Hargreaves (1975), Xu and Singh (2000)
Temperature-based 8 Blaney-Criddle T.p Xu and Singh (2002)
9 Romanenko T., € Romanenko (1961)
10 Hamon T,, Laay Hamon (1960), Oudin et al. (2005)
11 Linacre T, Tq Linacre (1977)
12 Hargreaves-Samani Tss Tz Liniing R Hargreaves and Samani (1982)
13 Thornthwaite® T Liay Thornthwaite (1948)
14 Kharrufa® T.p Xu and Singh (2001)

R, net radiation; T,, mean air temperature; T,.x and T.,;,, maximum and minimum air temperature, respectively; VPD, vapor pressure deficit; e,, actual vapor pressure; u,
wind speed; R, incident solar radiation; RH, relative humidity; Lq.y, maximum possible duration of sunlight or daylight hours; p, daily percentage of total annual daytime
hours; R,, extraterrestrial radiation. The units of the input variables for each model were shown in the Appendix.

2 These two models were applied to monthly scale, while other models were applied to daily scale.

containing one fully physically based method, six radiation-based models and seven
temperature-based models
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Assessing PET magnitudes
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PET models

AET should never exceed PET at a long-term
scale (e.g., annual time step), i.e., PET2AET on
average.

» Differences in the daily PET values
estimated from different PET models
were significant for all the eight sites
(p-values<0.05), and no models
gave consistently low or high PET
averages.

» Mean daily PET from all the fourteen
PET models were always larger than
mean daily AET only at the NM site .



Assessing PET magnitudes

Reasonable PET models representing magnitudes of evaporative demand for different sites. Reasonable PET models refer to the models
that give larger mean daily PET values than mean daily AET values according to the definition of PET (i.e., PET = AET on average). The
PET models with grey shadows are models which could give reasonable PET estimates for all the eight ecosystems.
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Assessing the annual and seasonal trends of PET

Three (kinds of) models were further considered to assess their ability in reproducing
annual and seasonal dynamics of evaporative demand.
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Monthly trends: Linear trends of PET rates for each month over the observational periods
with the method of ordinary least square regression. mm mth-1 yr-1

Annual trends: sum of twelve monthly trends to minimize the biases caused by timing of gaps
within the data records mm yr-2



Annual trends of PET at DHS site
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Annual trends of PET at NM site
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Site PET model A B
Annual-average rate Annual trend
(mmyr) (mm yr—?)
CBS Penman 960.15 —2.86(0.74)
Priestly-Taylor 695.95 3.20(0.48)
Linacre 1000.70 —7.37(0.40)
Precipitation 736.51 22.62(0.35)
AET 524.40 —3.91(0.34)
QYZ Penman 1143.22 —12.39(0.13)
Priestly-Taylor 1014.11 -1.11(0.84)
Linacre 1239.69 —15.67(0.06)
Precipitation 1363.74 34.28(0.30)
AET 809.62 13.14(0.33)
DHS Penman 1165.60 —15.10(0.24)
Priestly-Taylor 1008.26 —7.82(0.45)
Linacre 1364.23 —16.84(0.08)
Precipitation 1702.03 78.48(0.20)
AET 733.21 —3.27(0.66)
NM Penman 1087.41 -1.66(0.81)
Priestly-Taylor 668.70 7.98(0.22)
Linacre 1097.47 —10.60(0.11)
Precipitation 289.00 3.93(0.74)
AET 347.51 9.76(0.18)
Complementary Penman
Principle PET l Linacre




Assessing Annual Trends of PET
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» All the three PET models could faithfully reproduce the dynamics in evaporative demand for the energy-limited conditions
at the annual time scales.
» Only the Penman and Linacre models could represent dynamics in evaporative demand for the water-limited conditions.



Seasonal trends of PET in DHS site

Correlation coefficients between Per-month trends (i.e., trend for Januaries, for Februaries, etc.) of each PET model

estimates with equivalent trends in AET and P for each site

Subtropical evergreen broadleaf forest

80°00"E 100°0'0"E 120°0'0"E 140°0'0"E

seasonality of AET mainly determined by energy supply

Site PET model C
Correlation with per-month AET trends
£l CBS Penman 0.07(0.84)
2 Priestly-Taylor 0.05(0.87)
Linacre 0.02(0.95)
Precipitation —0.11(0.73)
z AET
: QYZ Penman ~0.10(0.76)
Priestly-Taylor 0.31(0.33)
° Linacre —0.40(0.20)
z| A Precipitation 0.07(0.83)
é L f AET
# e Rl DHS Penman 0.93( <0.001)
O CRO o e———"km J > Priestly-Taylor 0.89( < 0.001)
Se— e~ Linacre 0.73(0.01)
Precipitation —0.81(0.002)
AET
AET DHS AET Penman
p Energy-limited Principle PET DM



Seasonal trends of PET at NM site

Typical temperate steppe
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Site PET model C
Correlation with per-month AET trends
CBS Penman 0.07(0.84)
Priestly-Taylor 0.05(0.87)
Linacre 0.02(0.95)
Precipitation -0.11(0.73)
AET
QYZ Penman -0.10(0.76)
Priestly-Taylor 0.31(0.33)
Linacre —0.40(0.20)
Precipitation 0.07(0.83)
AET
DHS Penman 0.93( < 0.001)
Priestly-Taylor 0.89( < 0.001)
Linacre 0.73(0.01)
Precipitation —0.81(0.002)
AET
NM Penman —0.23(0.48)
Priestly-Taylor 0.56(0.06)
Linacre —-0.42(017)
Precipitation 0.43(0.16)
AET
Complementary e Penman
Principle PET Linacre

seasonality of AET mainly determined by WATER supply




Assessing Seasonal Trends of PET
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» All the three PET models could faithfully reproduce the dynamics in evaporative demand for the energy-limited conditions

at the seasonal scales.

» Only the Penman and Linacre models could represent dynamics in evaporative demand for the water-limited conditions.
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Per-month trends in PET, AET and P
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There exist seasonal switches between water- and energy-limited states for many sites !
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How the three models work in reproducing the seasonal switches ?

Trend in AET(mm mth”! yl"l)
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Through assessing the ability of 14 PET models in capturing long-term (typically 2003-2011) dynamics of evaporative
demand at eight ecosystems across various biomes and climatic regimes in China, we could conclude that:

» 3 of 14 PET models could represent the magnitudes of evaporative
demand.

» Priestly-Taylor model was best suited for energy-limited conditions.

» Linacre model may fail to capture seasonal switch between water- and
energy-limited states.

» Penman equation works best across the range of conditions tested.



Thanks for your attention!

ZHENG Han
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